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Introduction 

 

Mechanical Equivalent of Heat (MEH) calculates the temperature of a thermistor based on a 

user-supplied resistance. The user provides a plain ASCII calibration file containing 

temperature and resistance data for the thermistor to be used. MEH plots the provided 

calibration data and performs a least-square fit to determine the Steinhart-Hart coefficients1 

(with uncertainties) for the thermistor being used. Once calibrated, MEH will calculate the 

temperature based on a user-supplied resistance. 

 

MEH was developed for use with PASCO Scientifics’ “Mechanical Equivalent of Heat” 

apparatus, but it can be used with any thermistor provided the user supplies the data file for the 

calibration. By default, MEH uses the temperature vs. resistance data furnished by PASCO 

scientific2 for use with the thermistor embedded in the aluminum cylinder of PASCO’s 

“Mechanical Equivalent of Heat” apparatus.   

 

 

Figure 1: Screenshot of MEH. 

 



How to Use MEH 

 

To determine a temperature using MEH: 

 

When MEH runs, it looks for a file named “MEH_Input.txt” containing the temperature vs. 

resistance data for the thermistor being used. The file is opened, and a least-square fit is 

performed on that data in order to determine the Steinhart-Hart coefficients. If the file does not 

exist, it is created using the thermistor data provided by PASCO2 Scientific. To use MEH, enter 

the measured resistance into either resistance box and click the corresponding Calculate 

Temperature button. (See example in Figure 2).  

 

 

Figure 2: Example of using MEH. A resistance of ( )75,000 2%± Ω  gives an initial  

temperature of (31.27 +/- 0.44) oC, and a resistance of ( )210,000 2%± Ω  gives an final  

temperature of (9.80 +/- 0.39) oC. 



Using Your Own Thermistor Input File 

 

The format of the input text file is a plain ASCII text file with one TAB delimited temperature, 

resistance data point per line. The resistance must be in ohms and the temperature in o
C . See 

Figure 3 for an example. Be sure to name the calibration file “MEH_Input.txt” and place it in 

the same directory as the MEH application. 

 

 

Figure 3: Format of input data file showing resistance and temperature separated by a 

TAB. For example, 283,600 Ω  corresponds to 4 Co . 

 



Viewing Steinhart-Hart Coefficients 

 

The Steinhart-Hart coefficients can be viewed at any time by choosing Steinhart Coefficients 

from the MEH file menu. 

 

 

Figure 4: Viewing the Steinhart-Hart coefficients. 

 

The fit results for the included “MEH_Input.txt” file are shown below in Figure 5. 

 

 

Figure 5: Sample coefficients. 

 

 



The Gory Details 

 

The relationship between resistance and temperature for a thermistor is described by the 

Steinhart-Hart1 equation: 
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where 
K

T  is the absolute temperature in Kelvin and R is the resistance in Ohms. The 

coefficients A , B and C  are the Steinhart-Hart coefficients and vary depending on the 

thermistor. Defining ln( )x R= and 1
K

y
T

= , the equation above can be rewritten in the form: 

 

 3= + +y A Bx Cx  

 

The coefficients A , B  and C  can now be determined using a standard least-square fit approach3.  

For a set of calibration data ( , )i ix y , we want to find the values of A , B  and C  that minimize χ2: 
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where 
i

yδ  is the uncertainty in 
i

y . Assuming 
i

yδ  to be the same for all
i

y , we then minimize χ2 

with respect to each coefficient A , B  and C  to obtain a set of three equations and three 

unknownsi.  After a bit of algebra, one can write the set of equations as the matrix equation: 
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Using Maple© to solve this set of equations (via Cramer’s Rule) gives: 
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To determine uncertainties in the coefficients, uncertainties in
i

x  are considered negligible, and 

the uncertainties in
i

y  are assumed to be the same for all
i

y . The uncertainty in
i

y  is then 

estimated from the sample variance of y . That is,  
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for N  calibration data points. Finally, the uncertainty in the coefficients can be calculated from 

the estimated uncertainties
i

y  to obtain: 
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Using this technique to fit the data supplied by PASCO returns the coefficients

( ) 4 18.267 0.002 x10 K− −= ±A , ( ) 4 12.089 0.0003 x10 K− −= ±B , and ( ) 8 18.033 0.008 x10 K− −= ±C . 

With these values for the Steinhart-Hart coefficients, the temperature of the aluminum cylinder 

is calculated from the user-supplied value of the resistance.   

 

The total uncertainty in the temperature ( )Tδδδδ  is calculated by propagating the contributing 

uncertainties from A , B ,C , and R  using Squires’ method again.  For example, the contribution 

to Tδδδδ  due to the uncertainty in the A  coefficient is given by ( )
A

T T− δδδδ  where ( )
A
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That is: 
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The contribution to Tδδδδ  due to the error in B  is given by ( )
B

T T− δδδδ  where: 
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Defining similar expressions for 
C

Tδ and
R

Tδ , Tδ  is finally determined: 
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